Freshness anomalies
How it works
models:
- name: < model name >
tests:
- elementary.freshness_anomalies:
timestamp_column: < timestamp column > # Mandatory
where_expression: < sql expression >
time_bucket: # Daily by default
period: < time period >
count: < number of periods >models:
- name: login_events
tests:
- elementary.freshness_anomalies:
timestamp_column: "updated_at"
# optional - use tags to run elementary tests on a dedicated run
tags: ["elementary"]
config:
# optional - change severity
severity: warnTest configuration
tests:
— elementary.freshness_anomalies:
timestamp_column: column name
where_expression: sql expression
anomaly_sensitivity: int
detection_period:
period: [hour | day | week | month]
count: int
training_period:
period: [hour | day | week | month]
count: int
time_bucket:
period: [hour | day | week | month]
count: int
detection_delay:
period: [hour | day | week | month]
count: int
ignore_small_changes:
spike_failure_percent_threshold: int
drop_failure_percent_threshold: int
anomaly_exclude_metrics: [SQL expression]Last updated
Was this helpful?