Paradime Help Docs
Get Started
  • 🚀Introduction
  • 📃Guides
    • Paradime 101
      • Getting Started with your Paradime Workspace
        • Creating a Workspace
        • Setting Up Data Warehouse Connections
        • Managing workspace configurations
        • Managing Users in the Workspace
      • Getting Started with the Paradime IDE
        • Setting Up a dbt™ Project
        • Creating a dbt™ Model
        • Data Exploration in the Code IDE
        • DinoAI: Accelerating Your Analytics Engineering Workflow
          • DinoAI Agent
            • Creating dbt Sources from Data Warehouse
            • Generating Base Models
            • Building Intermediate/Marts Models
            • Documentation Generation
            • Data Pipeline Configuration
            • Using .dinorules to Tailor Your AI Experience
          • Accelerating GitOps
          • Accelerating Data Governance
          • Accelerating dbt™ Development
        • Utilizing Advanced Developer Features
          • Visualize Data Lineage
          • Auto-generated Data Documentation
          • Enforce SQL and YAML Best Practices
          • Working with CSV Files
      • Managing dbt™ Schedules with Bolt
        • Creating Bolt Schedules
        • Understanding schedule types and triggers
        • Viewing Run History and Analytics
        • Setting Up Notifications
        • Debugging Failed Runs
    • Migrating from dbt™ cloud to Paradime
  • 🔍Concepts
    • Working with Git
      • Git Lite
      • Git Advanced
      • Read Only Branches
      • Delete Branches
      • Merge Conflicts
      • Configuring Signed Commits on Paradime with SSH Keys
      • GitHub Branch Protection Guide: Preventing Direct Commits to Main
    • dbt™ fundamentals
      • Getting started with dbt™
        • Introduction
        • Project Strucuture
        • Working with Sources
        • Testing Data Quality
        • Models and Transformations
      • Configuring your dbt™ Project
        • Setting up your dbt_project.yml
        • Defining Your Sources in sources.yml
        • Testing Source Freshness
        • Unit Testing
        • Working with Tags
        • Managing Seeds
        • Environment Management
        • Variables and Parameters
        • Macros
        • Custom Tests
        • Hooks & Operational Tasks
        • Packages
      • Model Materializations
        • Table Materialization
        • View​ Materialization
        • Incremental Materialization
          • Using Merge for Incremental Models
          • Using Delete+Insert for Incremental Models
          • Using Append for Incremental Models
          • Using Microbatch for Incremental Models
        • Ephemeral Materialization
        • Snapshots
      • Running dbt™
        • Mastering the dbt™ CLI
          • Commands
          • Methods
          • Selector Methods
          • Graph Operators
    • Paradime fundamentals
      • Global Search
        • Paradime Apps Navigation
        • Invite users to your workspace
        • Search and preview Bolt schedules status
      • Using --defer in Paradime
      • Workspaces and data mesh
    • Data Warehouse essentials
      • BigQuery Multi-Project Service Account
  • 📖Documentation
    • DinoAI
      • Agent Mode
        • Use Cases
          • Creating Sources from your Warehouse
          • Generating dbt™ models
          • Fixing Errors with Jira
          • Researching with Perplexity
          • Providing Additional Context Using PDFs
      • Context
        • File Context
        • Directory Context
      • Tools and Features
        • Warehouse Tool
        • File System Tool
        • PDF Tool
        • Jira Tool
        • Perplexity Tool
        • Terminal Tool
        • Coming Soon Tools...
      • .dinorules
      • Ask Mode
      • Version Control
      • Production Pipelines
      • Data Documentation
    • Code IDE
      • User interface
        • Autocompletion
        • Context Menu
        • Flexible layout
        • "Peek" and "Go To" Definition
        • IDE preferences
        • Shortcuts
      • Left Panel
        • DinoAI Coplot
        • Search, Find, and Replace
        • Git Lite
        • Bookmarks
      • Command Panel
        • Data Explorer
        • Lineage
        • Catalog
        • Lint
      • Terminal
        • Running dbt™
        • Paradime CLI
      • Additional Features
        • Scratchpad
    • Bolt
      • Creating Schedules
        • 1. Schedule Settings
        • 2. Command Settings
          • dbt™ Commands
          • Python Scripts
          • Elementary Commands
          • Lightdash Commands
          • Tableau Workbook Refresh
          • Power BI Dataset Refresh
          • Paradime Bolt Schedule Toggle Commands
          • Monte Carlo Commands
        • 3. Trigger Types
        • 4. Notification Settings
        • Templates
          • Run and Test all your dbt™ Models
          • Snapshot Source Data Freshness
          • Build and Test Models with New Source Data
          • Test Code Changes On Pull Requests
          • Re-executes the last dbt™ command from the point of failure
          • Deploy Code Changes On Merge
          • Create Jira Tickets
          • Trigger Census Syncs
          • Trigger Hex Projects
          • Create Linear Issues
          • Create New Relic Incidents
          • Create Azure DevOps Items
        • Schedules as Code
      • Managing Schedules
        • Schedule Configurations
        • Viewing Run Log History
        • Analyzing Individual Run Details
          • Configuring Source Freshness
      • Bolt API
      • Special Environment Variables
        • Audit environment variables
        • Runtime environment variables
      • Integrations
        • Reverse ETL
          • Hightouch
        • Orchestration
          • Airflow
          • Azure Data Factory (ADF)
      • CI/CD
        • Turbo CI
          • Azure DevOps
          • BitBucket
          • GitHub
          • GitLab
          • Paradime Turbo CI Schema Cleanup
        • Continuous Deployment with Bolt
          • GitHub Native Continuous Deployment
          • Using Azure Pipelines
          • Using BitBucket Pipelines
          • Using GitLab Pipelines
        • Column-Level Lineage Diff
          • dbt™ mesh
          • Looker
          • Tableau
          • Thoughtspot
    • Radar
      • Get Started
      • Cost Management
        • Snowflake Cost Optimization
        • Snowflake Cost Monitoring
        • BigQuery Cost Monitoring
      • dbt™ Monitoring
        • Schedules Dashboard
        • Models Dashboard
        • Sources Dashboard
        • Tests Dashboard
      • Team Efficiency Tracking
      • Real-time Alerting
      • Looker Monitoring
    • Data Catalog
      • Data Assets
        • Looker assets
        • Tableau assets
        • Power BI assets
        • Sigma assets
        • ThoughtSpot assets
        • Fivetran assets
        • dbt™️ assets
      • Lineage
        • Search and Discovery
        • Filters and Nodes interaction
        • Nodes navigation
        • Canvas interactions
        • Compare Lineage version
    • Integrations
      • Dashboards
        • Sigma
        • ThoughtSpot (Beta)
        • Lightdash
        • Tableau
        • Looker
        • Power BI
        • Streamlit
      • Code IDE
        • Cube CLI
        • dbt™️ generator
        • Prettier
        • Harlequin
        • SQLFluff
        • Rainbow CSV
        • Mermaid
          • Architecture Diagrams
          • Block Diagrams Documentation
          • Class Diagrams
          • Entity Relationship Diagrams
          • Gantt Diagrams
          • GitGraph Diagrams
          • Mindmaps
          • Pie Chart Diagrams
          • Quadrant Charts
          • Requirement Diagrams
          • Sankey Diagrams
          • Sequence Diagrams
          • State Diagrams
          • Timeline Diagrams
          • User Journey Diagrams
          • XY Chart
          • ZenUML
        • pre-commit
          • Paradime Setup and Configuration
          • dbt™️-checkpoint hooks
            • dbt™️ Model checks
            • dbt™️ Script checks
            • dbt™️ Source checks
            • dbt™️ Macro checks
            • dbt™️ Modifiers
            • dbt™️ commands
            • dbt™️ checks
          • SQLFluff hooks
          • Prettier hooks
      • Observability
        • Elementary Data
          • Anomaly Detection Tests
            • Anomaly tests parameters
            • Volume anomalies
            • Freshness anomalies
            • Event freshness anomalies
            • Dimension anomalies
            • All columns anomalies
            • Column anomalies
          • Schema Tests
            • Schema changes
            • Schema changes from baseline
          • Sending alerts
            • Slack alerts
            • Microsoft Teams alerts
            • Alerts Configuration and Customization
          • Generate observability report
          • CLI commands and usage
        • Monte Carlo
      • Storage
        • Amazon S3
        • Snowflake Storage
      • Reverse ETL
        • Hightouch
      • CI/CD
        • GitHub
        • Spectacles
      • Notifications
        • Microsoft Teams
        • Slack
      • ETL
        • Fivetran
    • Security
      • Single Sign On (SSO)
        • Okta SSO
        • Azure AD SSO
        • Google SAML SSO
        • Google Workspace SSO
        • JumpCloud SSO
      • Audit Logs
      • Security model
      • Privacy model
      • FAQs
      • Trust Center
      • Security
    • Settings
      • Workspaces
      • Git Repositories
        • Importing a repository
          • Azure DevOps
          • BitBucket
          • GitHub
          • GitLab
        • Update connected git repository
      • Connections
        • Code IDE environment
          • Amazon Athena
          • BigQuery
          • Clickhouse
          • Databricks
          • Dremio
          • DuckDB
          • Firebolt
          • Microsoft Fabric
          • Microsoft SQL Server
          • MotherDuck
          • PostgreSQL
          • Redshift
          • Snowflake
          • Starburst/Trino
        • Scheduler environment
          • Amazon Athena
          • BigQuery
          • Clickhouse
          • Databricks
          • Dremio
          • DuckDB
          • Firebolt
          • Microsoft Fabric
          • Microsoft SQL Server
          • MotherDuck
          • PostgreSQL
          • Redshift
          • Snowflake
          • Starburst/Trino
        • Manage connections
          • Set alternative default connection
          • Delete connections
        • Cost connection
          • BigQuery cost connection
          • Snowflake cost connection
        • Connection Security
          • AWS PrivateLink
            • Snowflake PrivateLink
            • Redshift PrivateLink
          • BigQuery OAuth
          • Snowflake OAuth
        • Optional connection attributes
      • Notifications
      • dbt™
        • Upgrade dbt Core™ version
      • Users
        • Invite users
        • Manage Users
        • Enable Auto-join
        • Users and licences
        • Default Roles and Permissions
        • Role-based access control
      • Environment Variables
        • Bolt Schedules Environment Variables
        • Code IDE Environment Variables
  • 💻Developers
    • GraphQL API
      • Authentication
      • Examples
        • Audit Logs API
        • Bolt API
        • User Management API
        • Workspace Management API
    • Python SDK
      • Getting Started
      • Modules
        • Audit Log
        • Bolt
        • Lineage Diff
        • Custom Integration
        • User Management
        • Workspace Management
    • Paradime CLI
      • Getting Started
      • Bolt CLI
    • Webhooks
      • Getting Started
      • Custom Webhook Guides
        • Create an Azure DevOps Work item when a Bolt run complete with errors
        • Create a Linear Issue when a Bolt run complete with errors
        • Create a Jira Issue when a Bolt run complete with errors
        • Trigger a Slack notification when a Bolt run is overrunning
    • Virtual Environments
      • Using Poetry
      • Troubleshooting
    • API Keys
    • IP Restrictions in Paradime
    • Company & Workspace token
  • 🙌Best Practices
    • Data Mesh Setup
      • Configure Project dependencies
      • Model access
      • Model groups
  • ‼️Troubleshooting
    • Errors
    • Error List
    • Restart Code IDE
  • 🔗Other Links
    • Terms of Service
    • Privacy Policy
    • Paradime Blog
Powered by GitBook
On this page
  • Using Ask Mode
  • Ask Mode Commands
  • Asking Questions
  • Ask Mode Features

Was this helpful?

  1. Documentation
  2. DinoAI

Ask Mode

Previous.dinorulesNextVersion Control

Last updated 2 months ago

Was this helpful?

Ask Mode provides a flexible, conversational interface for working with DinoAI. It's ideal for exploratory questions, reviewing documentation, and generating suggestions across multiple files.

Using Ask Mode

  1. Click the DinoAI icon (🪄) in the left panel.

  2. Ensure "Ask Mode" is selected at the top of the panel.

  3. Type your question or command in the prompt.

Ask Mode Commands

Command Name
Syntax
Use Case

/model

Create new models with proper structure and logic

/explain

Understand existing models and their purpose

/fix

Identify and resolve errors in your models

/test

Create standard dbt™ tests for your models

/test_elementary

Create Elementary-specific model tests

/mermaid

Visualize model relationships

/sql_to_dbt

Convert existing SQL into dbt™ models


Asking Questions

Ask Mode can assist with any dbt™ development inquiry. Common questions include:

  • "How can I optimize the performance of my dbt models?"

  • "What's the best way to handle data quality issues?"

  • "Can you suggest a pattern for implementing incremental models?


Ask Mode Features

Create a dbt™ model

DinoAI generates dbt™ models based on your prompts, tailored to your project's structure.

How to Use

  1. Open DinoAI: Click the DinoAI icon (🪄) in the left panel.

  2. Access the "Create Model" Feature:

    • Select the "One Click" command: "Create a dbt model"

    • Or type /model in the prompt.

  3. Describe Your Model

Example Prompt
/model Create a dbt model named int_nba_player_info that joins all columns 
from nba_player_info with the salary and season columns from nba_player_salaries, 
using the player_id column as the join key. Materialize it as a view.
  1. Implement the Model:

    • Copy the generated SQL and paste it into your dbt project.


Explain a dbt™ Model

DinoAI provides detailed explanations of any dbt™ model, including purpose, structure, and key components.

How to Use

  1. Right-click a .sql file and select "Explain Model" from the DinoAI dropdown.

  2. Alternative: Open DinoAI and type:

/explain @[model_name}
  1. Review the Explanation: DinoAI will summarize your model’s purpose and output.


Debug a dbt™ Model

DinoAI helps identify and fix errors in your dbt™ models, ensuring a reliable data pipeline.

How to Use

  1. Right-click a .sql file and select "Fix Model" from the DinoAI dropdown.

  2. Alternative: Open DinoAI and type:

/fix @[model_name]
  1. Review and Implement Fixes:

    • Copy the debugged code into your project.

    • Use Data Explorer to validate the fixes.


Generate Tests For a dbt™ Model

DinoAI can automatically generate dbt™ tests to maintain data integrity and consistency.

Generating TestsGenerating Elementary Tests

How to Use

  1. Right-click a .sql file and select "Generate Tests".

  2. Alternative: Open DinoAI and type:

    /test @[model_name]
  3. Implement the Test:

    • Copy the test code into your schema.yml file.

    • Run dbt test to validate.


Generate Mermaid diagram for a dbt™ Model

How to Use:

  1. Right-click a .sql file and select "Generate Mermaid Diagram".

  2. Alternative: Open DinoAI and type:

    /mermaid @[model_name]
  3. Implement the Diagram:

    • Copy the Mermaid code into a .mmd file.

    • Upload it to Paradime Editor and click the 👀 eye icon to view it.


Convert SQL to dbt™ model

DinoAI can convert raw SQL queries into dbt™ models, saving development time.

How to Use:

  1. Right-click a .sql file with raw SQL and select "Convert SQL to dbt model".

  2. Alternative: Open DinoAI and type:

    /sql_to_dbt @[model_name]
  3. Implement the Model:

    • Copy the generated dbt model SQL and modify as needed.


When to Use Ask Mode

Ask Mode is ideal for:

  • Exploratory Analysis: When you're investigating data patterns or trying to understand relationships

  • Learning dbt™ Concepts: When you need explanations about dbt™ features or best practices

  • Cross-File Suggestions: When you need recommendations that span multiple files

  • Quick Reference: When you need to understand existing models without modifying them

Additional DinoAI Features

DinoAI extends beyond the Copilot to enhance your entire dbt™ workflow:

  • ⚙️ Custom Rules – Configure DinoAI behavior via the .dinorules file.

Modify as needed and validate using .

DinoAI can create entity relationship diagrams (ERDs) using , helping you visualize model dependencies.

– AI-generated commit messages & version control workflows.

– AI-powered data catalog and model documentation.

– Intelligent run analysis and troubleshooting in Bolt.

📖
Data Explorer
Mermaid.js
📜 Version Control
📖 Data Documentation
🚀 Production Pipelines
Create a dbt™ Model
Explain a dbt™ Model
Debug a dbt™ Model
Generate Tests for a dbt™ Model
Generate Elementary Tests for a dbt™ Model
Generate Mermaid Diagram For a dbt™ Model
Convert SQL to dbt™ model