Paradime Help Docs
Get Started
  • 🚀Introduction
  • 📃Guides
    • Paradime 101
      • Getting Started with your Paradime Workspace
        • Creating a Workspace
        • Setting Up Data Warehouse Connections
        • Managing workspace configurations
        • Managing Users in the Workspace
      • Getting Started with the Paradime IDE
        • Setting Up a dbt™ Project
        • Creating a dbt™ Model
        • Data Exploration in the Code IDE
        • DinoAI: Accelerating Your Analytics Engineering Workflow
          • DinoAI Agent
            • Creating dbt Sources from Data Warehouse
            • Generating Base Models
            • Building Intermediate/Marts Models
            • Documentation Generation
            • Data Pipeline Configuration
            • Using .dinorules to Tailor Your AI Experience
          • Accelerating GitOps
          • Accelerating Data Governance
          • Accelerating dbt™ Development
        • Utilizing Advanced Developer Features
          • Visualize Data Lineage
          • Auto-generated Data Documentation
          • Enforce SQL and YAML Best Practices
          • Working with CSV Files
      • Managing dbt™ Schedules with Bolt
        • Creating Bolt Schedules
        • Understanding schedule types and triggers
        • Viewing Run History and Analytics
        • Setting Up Notifications
        • Debugging Failed Runs
    • Migrating from dbt™ cloud to Paradime
  • 🔍Concepts
    • Working with Git
      • Git Lite
      • Git Advanced
      • Read Only Branches
      • Delete Branches
      • Merge Conflicts
      • Configuring Signed Commits on Paradime with SSH Keys
    • dbt™ fundamentals
      • Getting started with dbt™
        • Introduction
        • Project Strucuture
        • Working with Sources
        • Testing Data Quality
        • Models and Transformations
      • Configuring your dbt™ Project
        • Setting up your dbt_project.yml
        • Defining Your Sources in sources.yml
        • Testing Source Freshness
        • Unit Testing
        • Working with Tags
        • Managing Seeds
        • Environment Management
        • Variables and Parameters
        • Macros
        • Custom Tests
        • Hooks & Operational Tasks
        • Packages
      • Model Materializations
        • Table Materialization
        • View​ Materialization
        • Incremental Materialization
          • Using Merge for Incremental Models
          • Using Delete+Insert for Incremental Models
          • Using Append for Incremental Models
          • Using Microbatch for Incremental Models
        • Ephemeral Materialization
        • Snapshots
      • Running dbt™
        • Mastering the dbt™ CLI
          • Commands
          • Methods
          • Selector Methods
          • Graph Operators
    • Paradime fundamentals
      • Global Search
        • Paradime Apps Navigation
        • Invite users to your workspace
        • Search and preview Bolt schedules status
      • Using --defer in Paradime
      • Workspaces and data mesh
    • Data Warehouse essentials
      • BigQuery Multi-Project Service Account
  • 📖Documentation
    • DinoAI
      • Agent Mode
        • Use Cases
          • Creating Sources from your Warehouse
          • Generating dbt™ models
          • Fixing Errors with Jira
          • Researching with Perplexity
          • Providing Additional Context Using PDFs
      • Context
        • File Context
        • Directory Context
      • Tools and Features
        • Warehouse Tool
        • File System Tool
        • PDF Tool
        • Jira Tool
        • Perplexity Tool
        • Terminal Tool
        • Coming Soon Tools...
      • .dinorules
      • Ask Mode
      • Version Control
      • Production Pipelines
      • Data Documentation
    • Code IDE
      • User interface
        • Autocompletion
        • Context Menu
        • Flexible layout
        • "Peek" and "Go To" Definition
        • IDE preferences
        • Shortcuts
      • Left Panel
        • DinoAI Coplot
        • Search, Find, and Replace
        • Git Lite
        • Bookmarks
      • Command Panel
        • Data Explorer
        • Lineage
        • Catalog
        • Lint
      • Terminal
        • Running dbt™
        • Paradime CLI
      • Additional Features
        • Scratchpad
    • Bolt
      • Creating Schedules
        • 1. Schedule Settings
        • 2. Command Settings
          • dbt™ Commands
          • Python Scripts
          • Elementary Commands
          • Lightdash Commands
          • Tableau Workbook Refresh
          • Power BI Dataset Refresh
          • Paradime Bolt Schedule Toggle Commands
          • Monte Carlo Commands
        • 3. Trigger Types
        • 4. Notification Settings
        • Templates
          • Run and Test all your dbt™ Models
          • Snapshot Source Data Freshness
          • Build and Test Models with New Source Data
          • Test Code Changes On Pull Requests
          • Re-executes the last dbt™ command from the point of failure
          • Deploy Code Changes On Merge
          • Create Jira Tickets
          • Trigger Census Syncs
          • Trigger Hex Projects
          • Create Linear Issues
          • Create New Relic Incidents
          • Create Azure DevOps Items
        • Schedules as Code
      • Managing Schedules
        • Schedule Configurations
        • Viewing Run Log History
        • Analyzing Individual Run Details
          • Configuring Source Freshness
      • Bolt API
      • Special Environment Variables
        • Audit environment variables
        • Runtime environment variables
      • Integrations
        • Reverse ETL
          • Hightouch
        • Orchestration
          • Airflow
          • Azure Data Factory (ADF)
      • CI/CD
        • Turbo CI
          • Azure DevOps
          • BitBucket
          • GitHub
          • GitLab
          • Paradime Turbo CI Schema Cleanup
        • Continuous Deployment with Bolt
          • GitHub Native Continuous Deployment
          • Using Azure Pipelines
          • Using BitBucket Pipelines
          • Using GitLab Pipelines
        • Column-Level Lineage Diff
          • dbt™ mesh
          • Looker
          • Tableau
          • Thoughtspot
    • Radar
      • Get Started
      • Cost Management
        • Snowflake Cost Optimization
        • Snowflake Cost Monitoring
        • BigQuery Cost Monitoring
      • dbt™ Monitoring
        • Schedules Dashboard
        • Models Dashboard
        • Sources Dashboard
        • Tests Dashboard
      • Team Efficiency Tracking
      • Real-time Alerting
      • Looker Monitoring
    • Data Catalog
      • Data Assets
        • Looker assets
        • Tableau assets
        • Power BI assets
        • Sigma assets
        • ThoughtSpot assets
        • Fivetran assets
        • dbt™️ assets
      • Lineage
        • Search and Discovery
        • Filters and Nodes interaction
        • Nodes navigation
        • Canvas interactions
        • Compare Lineage version
    • Integrations
      • Dashboards
        • Sigma
        • ThoughtSpot (Beta)
        • Lightdash
        • Tableau
        • Looker
        • Power BI
        • Streamlit
      • Code IDE
        • Cube CLI
        • dbt™️ generator
        • Prettier
        • Harlequin
        • SQLFluff
        • Rainbow CSV
        • Mermaid
          • Architecture Diagrams
          • Block Diagrams Documentation
          • Class Diagrams
          • Entity Relationship Diagrams
          • Gantt Diagrams
          • GitGraph Diagrams
          • Mindmaps
          • Pie Chart Diagrams
          • Quadrant Charts
          • Requirement Diagrams
          • Sankey Diagrams
          • Sequence Diagrams
          • State Diagrams
          • Timeline Diagrams
          • User Journey Diagrams
          • XY Chart
          • ZenUML
        • pre-commit
          • Paradime Setup and Configuration
          • dbt™️-checkpoint hooks
            • dbt™️ Model checks
            • dbt™️ Script checks
            • dbt™️ Source checks
            • dbt™️ Macro checks
            • dbt™️ Modifiers
            • dbt™️ commands
            • dbt™️ checks
          • SQLFluff hooks
          • Prettier hooks
      • Observability
        • Elementary Data
          • Anomaly Detection Tests
            • Anomaly tests parameters
            • Volume anomalies
            • Freshness anomalies
            • Event freshness anomalies
            • Dimension anomalies
            • All columns anomalies
            • Column anomalies
          • Schema Tests
            • Schema changes
            • Schema changes from baseline
          • Sending alerts
            • Slack alerts
            • Microsoft Teams alerts
            • Alerts Configuration and Customization
          • Generate observability report
          • CLI commands and usage
        • Monte Carlo
      • Storage
        • Amazon S3
        • Snowflake Storage
      • Reverse ETL
        • Hightouch
      • CI/CD
        • GitHub
        • Spectacles
      • Notifications
        • Microsoft Teams
        • Slack
      • ETL
        • Fivetran
    • Security
      • Single Sign On (SSO)
        • Okta SSO
        • Azure AD SSO
        • Google SAML SSO
        • Google Workspace SSO
        • JumpCloud SSO
      • Audit Logs
      • Security model
      • Privacy model
      • FAQs
      • Trust Center
      • Security
    • Settings
      • Workspaces
      • Git Repositories
        • Importing a repository
          • Azure DevOps
          • BitBucket
          • GitHub
          • GitLab
        • Update connected git repository
      • Connections
        • Code IDE environment
          • Amazon Athena
          • BigQuery
          • Clickhouse
          • Databricks
          • Dremio
          • DuckDB
          • Firebolt
          • Microsoft Fabric
          • Microsoft SQL Server
          • MotherDuck
          • PostgreSQL
          • Redshift
          • Snowflake
          • Starburst/Trino
        • Scheduler environment
          • Amazon Athena
          • BigQuery
          • Clickhouse
          • Databricks
          • Dremio
          • DuckDB
          • Firebolt
          • Microsoft Fabric
          • Microsoft SQL Server
          • MotherDuck
          • PostgreSQL
          • Redshift
          • Snowflake
          • Starburst/Trino
        • Manage connections
          • Set alternative default connection
          • Delete connections
        • Cost connection
          • BigQuery cost connection
          • Snowflake cost connection
        • Connection Security
          • AWS PrivateLink
            • Snowflake PrivateLink
            • Redshift PrivateLink
          • BigQuery OAuth
          • Snowflake OAuth
        • Optional connection attributes
      • Notifications
      • dbt™
        • Upgrade dbt Core™ version
      • Users
        • Invite users
        • Manage Users
        • Enable Auto-join
        • Users and licences
        • Default Roles and Permissions
        • Role-based access control
      • Environment Variables
        • Bolt Schedules Environment Variables
        • Code IDE Environment Variables
  • 💻Developers
    • GraphQL API
      • Authentication
      • Examples
        • Audit Logs API
        • Bolt API
        • User Management API
        • Workspace Management API
    • Python SDK
      • Getting Started
      • Modules
        • Audit Log
        • Bolt
        • Lineage Diff
        • Custom Integration
        • User Management
        • Workspace Management
    • Paradime CLI
      • Getting Started
      • Bolt CLI
    • Webhooks
      • Getting Started
      • Custom Webhook Guides
        • Create an Azure DevOps Work item when a Bolt run complete with errors
        • Create a Linear Issue when a Bolt run complete with errors
        • Create a Jira Issue when a Bolt run complete with errors
        • Trigger a Slack notification when a Bolt run is overrunning
    • Virtual Environments
      • Using Poetry
      • Troubleshooting
    • API Keys
    • IP Restrictions in Paradime
    • Company & Workspace token
  • 🙌Best Practices
    • Data Mesh Setup
      • Configure Project dependencies
      • Model access
      • Model groups
  • ‼️Troubleshooting
    • Errors
    • Error List
    • Restart Code IDE
  • 🔗Other Links
    • Terms of Service
    • Privacy Policy
    • Paradime Blog
Powered by GitBook
On this page
  • Commands Overview
  • Asking Questions
  • Create a dbt™ model
  • Explain a dbt™ Model
  • Debug a dbt™ Model
  • Generate Tests For a dbt™ Model
  • Generate Mermaid diagram for a dbt™ Model
  • Convert SQL to dbt™ model

Was this helpful?

  1. Documentation
  2. Code IDE
  3. Left Panel

DinoAI Coplot

DinoAI Copilot provides real-time, context-aware support to enhance your dbt™ development workflow. Whether you’re optimizing model performance, troubleshooting data transformations, or implementing incremental models, Copilot helps—without disrupting your focus.

Commands Overview

Command Name
Syntax
Use Case

/model

Create new models with proper structure and logic

/explain

Understand existing models and their purpose

/fix

Identify and resolve errors in your models

/test

Create standard dbt™ tests for your models

/test_elementary

Create Elementary-specific model tests

/mermaid

Visualize model relationships

/sql_to_dbt

Convert existing SQL into dbt™ models


Asking Questions

Copilot can assist with any dbt™ development inquiry. Common questions include:

  • "How can I optimize the performance of my dbt models?"

  • "What's the best way to handle data quality issues?"

  • "Can you suggest a pattern for implementing incremental models?

How to Use:

  1. Click the DinoAI icon (🪄) in the left panel.

  2. Type your question in the prompt.


Create a dbt™ model

DinoAI generates dbt™ models based on your prompts, tailored to your project’s structure.

How to Use

  1. Open DinoAI: Click the DinoAI icon (🪄) in the left panel.

  2. Access the "Create Model" Feature:

    • Select the "One Click" command: "Create a dbt model"

    • Or type /model in the prompt.

  3. Describe Your Model

Example Prompt
/model Create a dbt model named int_nba_player_info 
that joins all columns from nba_player_info with the 
salary and season columns from nba_player_salaries, 
using the player_id column as the join key. 
Materialize it as a view.
  1. Implement the Model:

    • Copy the generated SQL and paste it into your dbt project.


Explain a dbt™ Model

DinoAI provides detailed explanations of any dbt™ model, including purpose, structure, and key components.

How to Use

  1. Right-click a .sql file and select "Explain Model" from the DinoAI dropdown.

  2. Alternative: Open DinoAI and type:

/explain @[model_name}
  1. Review the Explanation: DinoAI will summarize your model’s purpose and output.


Debug a dbt™ Model

DinoAI helps identify and fix errors in your dbt™ models, ensuring a reliable data pipeline.

How to Use

  1. Right-click a .sql file and select "Fix Model" from the DinoAI dropdown.

  2. Alternative: Open DinoAI and type:

/fix @[model_name]
  1. Review and Implement Fixes:

    • Copy the debugged code into your project.

    • Use Data Explorer to validate the fixes.


Generate Tests For a dbt™ Model

DinoAI can automatically generate dbt™ tests to maintain data integrity and consistency.

Generating TestsGenerating Elementary Tests

How to Use

  1. Right-click a .sql file and select "Generate Tests".

  2. Alternative: Open DinoAI and type:

    /test @[model_name]
  3. Implement the Test:

    • Copy the test code into your schema.yml file.

    • Run dbt test to validate.


Generate Mermaid diagram for a dbt™ Model

How to Use:

  1. Right-click a .sql file and select "Generate Mermaid Diagram".

  2. Alternative: Open DinoAI and type:

    /mermaid @[model_name]
  3. Implement the Diagram:

    • Copy the Mermaid code into a .mmd file.

    • Upload it to Paradime Editor and click the 👀 eye icon to view it.


Convert SQL to dbt™ model

DinoAI can convert raw SQL queries into dbt™ models, saving development time.

How to Use:

  1. Right-click a .sql file with raw SQL and select "Convert SQL to dbt model".

  2. Alternative: Open DinoAI and type:

    /sql_to_dbt @[model_name]
  3. Implement the Model:

    • Copy the generated dbt model SQL and modify as needed.


Additional DinoAI Features

DinoAI extends beyond the Copilot to enhance your entire dbt™ workflow:

PreviousLeft PanelNextSearch, Find, and Replace

Last updated 3 months ago

Was this helpful?

Modify as needed and validate using .

DinoAI can create entity relationship diagrams (ERDs) using , helping you visualize model dependencies.

– AI-generated commit messages & version control workflows.

– AI-powered data catalog and model documentation.

– Intelligent run analysis and troubleshooting in Bolt.

– Configure DinoAI behavior via the .dinorules file.

📖
Data Explorer
Mermaid.js
📜 Version Control
📖 Data Documentation
🚀 Production Pipelines
⚙️ Custom Rules
Create a dbt™ Model
Explain a dbt™ Model
Debug a dbt™ Model
Generate Tests for a dbt™ Model
Generate Elementary Tests for a dbt™ Model
Generate Mermaid Diagram For a dbt™ Model
Convert SQL to dbt™ model